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SUMMARY 

 Skeletal fragility is characterized by low bone mass, negative changes in bone 

microarchitecture, and compromised tissue matrix properties, including accumulation of 

microdamage. Microdamage accumulates in vivo from daily physiological loading and is 

targeted for repair through a normal remodeling process, thus preventing microcrack 

growth and potential fracture. However, impaired remodeling is associated with aging 

and osteoporosis, resulting in an increased accumulation of microdamage which 

contributes to reduced bone mechanical properties. The current clinical method for 

assessing increased risk of fracture involves measuring bone mineral density (BMD) of 

the hip and spine, locations of trabecular bone where high rates of remodeling occur. The 

bisphosphonate alendronate (ALN) reduces clinical risk for fracture by significantly 

increasing BMD, but studies have shown a concomitant reduction in intrinsic properties 

that may be the underlying cause for recent reports of spontaneous fractures with long-

term alendronate use. Another anti-resorptive agent called raloxifene (RAL) is a selective 

estrogen receptor modulator (SERM) and has been shown to modestly improve BMD 

while decreasing fracture risk to a similar degree as alendronate. The combination of 

RAL and ALN as a treatment for osteoporosis may provide the benefits of each drug 

without the negative effects of ALN. 

 Therefore, the overall goal of this thesis was to address the effects of aging and 

anti-resorptive agents on the properties of bone through the formation of microdamage. 

Assessment of age-related effects on bone was conducted through quantification of 

microdamage progression. It was found that old bone results in greater incidences of 

microdamage progression, reflecting a compromised tissue matrix with reduced 
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resistance to crack growth. Effects of combination treatment with RAL and ALN were 

evaluated through biomechanical testing, micro-CT imaging, and microdamage 

quantification. Results showed improved trabecular bone volume and ultimate load with 

positive effects on trabecular architecture. Combination treatment reduced the proportion 

of microdamage that may lead to catastrophic fracture, indicating an improvement in the 

local tissue matrix properties. 
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CHAPTER 1 

INTRODUCTION 

 

Overview 

 Bone quality is dependent on many factors such as microarchitectural 

organization and the condition of the tissue matrix, including the accumulation of 

microdamage [1-2]. Compromised bone quality combined with decreases in bone mass 

contributes to increased skeletal fragility in humans. These changes in bone can lead to 

compromised function and potentially traumatic fractures – often in the hip, spine, and 

wrist where cancellous bone is most prevalent – as is seen with osteoporosis and the 

elderly population. In the United States alone, osteoporotic fractures were estimated to be 

greater than 2 million and cost nearly $17 billion in 2005 with a predicted rise in 

incidence and cost of nearly 50% by 2025 [3]. It is believed that the changes in bone 

quality associated with aging and osteoporosis are the cause for the resultant decreases in 

material properties that increase fracture risk [1, 4]. Current clinical methods measure 

bone mineral density (BMD) to predict fracture risk, but a study by Hui et al showed that 

at a given bone mass, fracture risk increases with age [5]. This reflects the lack of 

sensitivity this diagnostic measurement has to changes in bone quality such as increased 

microdamage accumulation [6]. Concomitantly, current therapies aim to increase bone 

mass through pharmacological means such as the anti-resorptive agents bisphosphonates 

and selective estrogen receptors (SERMs). Since no clinical methods have been 

established for measuring bone strength and bone quality to assess fracture risk to date, 

understanding the underlying changes leading to increased skeletal fragility may provide 
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the basis for new diagnostics and treatments. Therefore, the overall goal of this thesis was 

to provide insight into the properties of bone through the formation of microdamage and 

biomechanical testing as it pertains to aging and the use of anti-resorptive agents for 

treatment of osteoporosis in trabecular bone. 

Background 

 Bone is an integral component of our bodies, providing structural support and 

facilitating movement. Each bone sees a different mechanical environment depending on 

where it is located in the skeleton giving rise to the different shapes and sizes [7]. To 

adequately sustain the physiological forces subsequently imparted, two types of bone are 

present in varying ratios: cortical (compact) and trabecular (cancellous) bone. Cortical 

bone is dense bone with very low porosity that makes up about 80% of the adult human 

skeleton [8]. While primarily found in the diaphysis of long bones, cortical bone makes 

up the outer wall of all bones, thereby providing support and protection. The remaining 

20% of the human skeleton consists of trabecular bone. Found in the metaphysis and 

epiphysis of long bones and in vertebrae, trabecular bone has a highly porous structure 

consisting of a network of trabecular plates and rods. Both cortical and trabecular bone 

consist of mineralized collagen fibrils laid down in a lamellar pattern [8-9]. This 

combination of organic and inorganic components arranged in a complex ordered fashion 

provides bone with the necessary stiffness and ductility to withstand variable modes of 

loading. 

 Unlike typical engineering materials, bone is a dynamic organ capable of 

restructuring itself in order to compensate for changes in local stresses and strains. This 

process is known as bone remodeling and involves three main cells: osteoclasts, 
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osteoblasts, and osteocytes [10]. The remodeling cycle begins with activation of 

osteoclasts and osteoblasts. Mature osteoclasts then resorb bone followed by osteoblasts 

which deposit unmineralized bone matrix (osteoid) to be slowly mineralized over time. 

Osteoblasts incorporated into the bone matrix are called osteocytes and are believed to be 

integral to the activation of the remodeling process [11]. Bone remodeling can also be 

initiated by osteocytes as a result of microcrack formation [12-13]. These cracks, if left 

unrepaired, accumulate and could lead to fractures and thus compromise the integrity of 

the bone [14]. 

 However, the presence of microdamage is not an indication of imminent failure of 

bone. In 1960, Harold Frost was the first to demonstrate that microcracks developed in 

vivo due to fatigue in his study looking at human ribs [15]. Since then, many researchers 

have shown that microcracks form in vivo in cortical [16-18] and trabecular bone [19-22]. 

This microdamage forms as a consequence of daily physiological loading in the form of 

fatigue. Bone remodeling then occurs as a response to this fatigue damage in an effort to 

repair the bone [23]. Burr and associates showed in dogs that microdamage formed as a 

consequence of in vivo loading and remodeling occurred as a response to it [24-25]. A 

study in rat ulna showed that intracortical remodeling activated as a result of fatigue 

microdamage even though laboratory rats are understood to lack haversian remodeling 

activity [26]. The balance between microdamage formation and repair is what allows 

bone to maintain its mechanical integrity [27]. 

 While microdamage accumulation is considered to contribute to skeletal fragility, 

its exact role in increasing fracture risk is not entirely understood [28-29]. Many studies 

have been conducted to investigate microdamage accumulation with age [17, 19, 22, 30] 
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and its role in bone mechanical properties. Mori et al found that microcrack density 

increased significantly with age but that women with fractures did not have more 

microdamage than women without fractures [19]. While this indicates no direct 

relationship between microdamage accumulation and fractures, there is no data regarding 

tissue matrix properties or trabecular architecture accompanying this study. Damage in 

trabecular bone was found to form at strains below apparent yield strain as determined 

from reductions in modulus [31]. Others have found that significant levels of 

microdamage do not form until apparent yield strains are reached or exceeded [32-34]. 

Interestingly, the presence of microdamage in trabecular bone seems to play a greater role 

in decreases in apparent mechanical properties than do trabecular fractures [35]. In any 

case, strain induced microdamage formation is strongly correlated with strain induced 

reductions in modulus and strength [32, 36]. Results from Burr et al also showed this 

relationship with the presence of microcrack accumulation in cortical bone after a 

stiffness loss of 15% [37]. In fact, differences in modulus loss with aging have been 

shown to reflect a longer fatigue life for younger bone [38]. A study in young human 

vertebrae showed a decrease in energy absorption associated with increasing density of 

microcracks [39]. With increasing age, accumulation of microdamage was found to be 

associated more with changes in toughness properties than with stiffness or strength [18]. 

This data suggests a strong relationship between microdamage and bone mechanical 

properties. However other factors should not be ignored when considering microdamage 

and the mechanical properties of bone. For instance, Bevill et al showed variability in 

yield strains with respect to loading-axis between human trabecular bone in vertebral 

bodies and femoral necks [40]. Arlot et al showed that in human vertebrae, microdamage 
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increases with age exponentially and is associated with a more rod-like trabecular 

architecture [41]. These studies necessitate understanding of bone location and 

architecture in addition to microdamage and bone mass in order to adequately 

characterize bone material properties. Similarly, the hierarchical nature of bone and the 

role of the tissue matrix should not be ignored when studying microdamage [42]. 

 The behavior of microdamage in bone also provides insight into the role of 

microcracks in skeletal fragility. Biomechanical testing of bone has shown that two types 

of microdamage form: linear and diffuse [43-45]. Linear type damage is associated more 

with bone in tension while diffuse damage is typically found in compressive regions. 

Burr et al found that cracks tended to be fewer and longer in compressive than tensile 

cortices [37]. Reilly and Currey found this same result and also noted that areas in tension 

formed cracks at lower strains than areas in compression, but once formed, compressive 

microcracks tended to grow into long cracks [43]. This behavior suggests that diffuse 

damage is self limiting and thus is less deleterious to the mechanical integrity of bone 

[46]. In fact, linear damage is associated more with older bone and a lower fatigue life 

[46] and exhibits more targeted remodeling than diffuse damage [45]. Compressive 

damage was also shown to drastically reduce the energy absorption capacity of bone [47]. 

The nature of crack formation in bone would indicate that bone is formed specifically to 

withstand a single mode of loading [43, 47]. 

 The danger of linear damage is in its propensity to rapidly propagate and cause 

catastrophic fracture [37], especially in the absence of microstructural barriers [48]. Thus 

in order to elucidate the contribution of microdamage to fracture risk, it is important to 

determine how and why cracks propagate and are arrested in bone. It is understood that 
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cracks initiate at areas of stress concentration (e.g. bone surfaces, cement lines, canal 

networks) and will subsequently grow according to the path of least resistance [48-50]. 

Vashishth et al suggested a pattern for crack growth involving the formation of a small 

zone of cracks due to applied loads followed by a main crack that accelerates through this 

zone and slows at areas of undamaged matrix [51]. Further loading causes this main 

crack to slowly propagate as smaller microcracks form behind and in front it at which 

point the pattern repeats again. Given that loads are continuously applied, this crack 

growth may or may not accelerate through bone to fracture with a dependence on crack 

size when obstacles are encountered [48]. However, bone is naturally a fatigue resistant 

composite material predisposed to resisting crack propagation [37, 52] through various 

mechanisms including crack bridging, crack deflection, and the creation of more cracks 

[53]. These findings apply to cortical bone which is much more dense and structured than 

the highly porous trabecular bone. Thus, while in principle these ideas apply to trabecular 

bone, the exact behavior of microcracks in trabecular bone has not been well studied. 

Wang et al utilized shear and compressive loading to test young bovine tibial cancellous 

bone for microdamage propagation [54]. They found that mixed mode loading resulted in 

microcrack propagation, implying a propensity for trabecular bone to allow crack 

propagation. In a finite element study, trabecular bone was found to fail (defined as 30% 

modulus reduction) as a result of an accumulation of microcracks and not trabecular 

fractures [55]. This indicates preference towards creation of more microdamage versus 

propagation of existing cracks. However this model only included compressive loads and 

assumed homogeneous tissue properties. Regardless of the type of bone, microdamage 

behavior changes as a result of changes in tissue matrix properties as seen with aging and 
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osteoporosis. As bone ages, the tissue becomes more mineralized and homogeneous. This 

reduces the ability of bone to resist both crack initiation and crack growth [56-57]. Thus a 

more mineralized tissue matrix combined with imbalanced remodeling due to aging 

results in microdamage accumulation and increased risk for crack propagation to 

catastrophic failure [29, 38]. 

 Many methods have been developed in order to detect microdamage in bone both 

in vivo and in vitro including chelating fluorochromes [58]. Unlike the basic fuchsin label 

used by Frost [15] and later validated by Burr and Stafford [59], fluorochromes such as 

alizarin and calcein are site-specific and have a range of emission wavelengths ideal for 

detecting a series of microcrack events [58]. Lee et al was the first to report the technique 

of sequentially labeling microcracks in vitro with chelating fluorochromes [60]. However 

the stains used were not easily separable visually and also raised concerns of dye 

substitution. Later O’Brien et al improved upon this technique by analyzing the affinity 

of several chelating agents for calcium ions effectively reducing the possibility of dye 

substitution by defining an optimal sequence of staining [61]. Since then, many studies 

have utilized this technique for varying purposes including to correlate microdamage to 

microstructural stresses in bovine trabecular bone [62], to look at microdamage 

propagation in bovine trabecular bone [54], to examine age related responses of rat 

trabecular bone to microdamage [63], to measure microdamage accumulation in human 

vertebral trabecular bone [41], and to relate microdamage initiation with microstructural 

stresses in alendronate treated dogs [64]. 

 Clinically, investigating the role of microdamage accumulation in fracture risk 

may provide clinicians with improved diagnostic tools and alternative therapies to drugs 
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such as bisphosphonates and selective estrogen receptor modulators (SERMs). 

Bisphosphonates are pharmacological compounds that bind strongly to the mineral in 

bone, hydroxyapatite [65]. During resorption of bone, bisphosphonates are internalized 

by osteoclasts and subsequently induce apoptosis of the osteoclasts. The result is an 

inhibition of bone resorption and an increase in bone mineral density. Alendronate 

(ALN), a bisphosphonate used clinically, has been shown to increase BMD from base-

line values in postmenopausal women with osteoporosis in the lumbar spine (13.7%), 

trochanter (10.3%), femoral neck (5.4%), and at the total proximal femur (6.7%) [66]. It 

has also been shown to reduce the risk of clinical fractures in women without vertebral 

fractures with osteoporosis by 36% [67]. Another study reported increases in the mean 

degree of mineralization of bone with alendronate treatment for 2 and 3 years and a 

subsequent increase in BMD and reduction in fracture rate [68]. SERMs are partial 

agonists that bind to estrogen receptors and like bisphosphonates, inhibit resorption of 

bone resulting in an increase in bone mass but to a lesser degree than bisphosphonates 

[69]. Raloxifene (RAL) is a clinically available SERM that has been shown in a four year 

study of women with postmenopausal osteoporosis to decrease the vertebral fracture risk 

by 39% and modestly improve BMD in both the lumbar spine and femoral neck (<3%) 

compared to placebo [70]. Other studies have shown the ALN increases BMD by a 

significantly greater amount than RAL in postmenopausal women with low BMD, but no 

analysis of fracture risk was conducted [71-72]. Thus presents a paradox in which RAL 

increases BMD to a lesser degree than ALN but reduces fracture risk by a comparable 

amount [73]. Clearly BMD is not the only factor involved in determining fracture risk as 
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evidenced by the 17% and 4% contributions BMD provides to reductions in vertebral 

fracture risk with ALN and RAL therapy, respectively [6, 73].  

 Animal studies have utilized clinically relevant doses of both RAL and ALN to 

investigate effects on both bone mechanical properties and on microdamage 

accumulation. In a study in beagles, ALN doses equivalent to 6 times the recommended 

clinical dosage were administered to investigate the effects of suppressed bone turnover 

[74]. The group’s previous study indicated microdamage accumulation in the rib cortex 

accompanied by a reduction in bone toughness. This subsequent study found significant 

increases in microdamage accumulation in the vertebrae as well as increased trabecular 

bone volume and vertebral strength. They also found a 21% reduction in vertebral 

toughness, indicating a relationship with microdamage. However, later studies by Allen 

et al with clinically relevant doses of ALN administered to beagles found no changes in 

vertebral mechanical properties except an increase in stiffness despite an increase in 

microdamage accumulation from control [75]. The lack of reduction in mechanical 

properties was attributed to the significant increases in bone volume and mineralization. 

A follow up study carried the treatment through to 3 years and found no differences in 

microdamage accumulation in vertebrae or decreased vertebral toughness when 

compared with beagles treated for one year [76]. A similar study found no differences in 

any mechanical properties in canine femoral cortical bone as a result of ALN treatment 

between 1 and 3 years of treatment [77]. It seems that treatment with ALN may reduce 

fracture risk primarily through drastically reduced remodeling related increases in bone 

mass and mineralization. In contrast, treatment with clinically relevant doses of RAL for 

one year in beagles resulted in no increase in microdamage accumulation and a 
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significant increase in vertebral strength when compared to vehicle treated beagles [78]. 

A continuation of this study found that RAL treatment increased ultimate stress, modulus, 

and toughness values in trabecular bone and toughness values in cortical bone over 

vehicle treated dogs [79]. Treatment with ALN or RAL each has its pros and cons, thus 

leading to a reasonable avenue for investigation regarding the combination of the two as a 

treatment modality. Johnell et al conducted a study to determine the additive effects of 

ALN and RAL and found that the combination of the two anti-resorptive drugs resulted 

in a greater reduction in bone turnover and greater BMD in the femoral neck [80]. 

However no biomechanical tests were conducted and thus no effects on mechanical 

properties are known. If the effects of RAL and ALN are additive in BMD, then it would 

be safe to hypothesize a similar result when examining the effects of combination 

treatment on bone mechanical properties. 

Specific Aims 

 The overall goal of this thesis was to determine the integrity of bone tissue 

through biomechanical testing and microdamage quantification. Bone matrix properties 

are integral to understanding skeletal fragility. Mechanical testing data can be used to 

determine derived material properties which reflect the behavior of bone at the apparent 

level. Analyzing the amount of microdamage present in bone reflects tissue matrix 

properties and thus gives insight into the behavior of bone at the local level. This research 

is novel because it investigates the poorly understood nature of microdamage progression 

within trabecular bone as it relates to aging, and it evaluates the combination of 

raloxifene (RAL) and alendronate (ALN) on bone material properties as it may relate to 
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treatment for osteoporosis. It is significant because it seeks to utilize microdamage 

quantification as a means for assessing bone tissue matrix quality. 

Aim 1: 

 Quantify microdamage progression in human trabecular bone as a function of 

age. Human trabecular bone from female donors was mechanically tested following a 

protocol developed by the researcher. Two separate loading conditions were applied to 

create microdamage and microdamage progression. An established fluorescent labeling 

technique was used to detect and differentiate initial microdamage from microdamage 

progression. Micro-CT imaging provided trabecular architecture and mineralization for 

analysis of age effects. It was hypothesized that bone from older donors would have 

increased incidence of microdamage and microdamage progression reflecting the 

propensity of older bone to form cracks in vivo. 

Aim 2: 

 Determine the effects of anti-resorptive agents on biomechanical properties in rat 

bone and microdamage formation in rat trabecular bone. An established osteoporosis 

model in rats was used to determine effects of treatment with RAL, ALN, and the 

combination of the two. Rat femurs and vertebrae were mechanically tested to determine 

structural and derived material properties. A separate group of vertebrae were 

mechanically tested to induce microdamage formation. Fluorescent staining was applied 

as in Aim 1 to identify preexisting and test induced microdamage. Micro-CT imaging 

was used to determine morphological parameters of femurs and vertebrae. It was 

hypothesized that combination treatment with RAL and ALN would improve 

biomechanical properties in both the femurs and vertebrae more than each drug alone. 
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This would be a result of the additive effects of the increase in bone volume by ALN and 

the improvement of material properties by RAL. It was further hypothesized that 

microdamage accumulation would be greatest with ALN treatment among the treatment 

groups followed by combination treatment and RAL. 
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CHAPTER 2 

AGE-RELATED CHANGES IN MICRODAMAGE PROGRESSION 

IN HUMAN TRABECULAR BONE 

 

Introduction 

 Bone mass in humans naturally increases until it reaches its peak at approximately 

30 years of age [1]. Bone mass is maintained until about 40 years when a slow decline 

occurs resulting in the onset of osteopenia and eventually for many, especially 

postmenopausal women, osteoporosis. However these are not the only changes in bone 

that occur with age. Trabecular bone quality (collagen, mineral, and microdamage) [2-4], 

quantity (bone volume fraction), and microarchitecture (trabecular number, thickness, 

structure model index, etc.) are altered as a result of age-related changes [5-8]. It has been 

well established that the mineral content of bone contributes to strength and stiffness 

while the nature of the organic matrix has been largely disregarded. Recent studies have 

shown that decreases in the mechanical integrity in the collagen network result in 

compromised matrix properties and thus contribute to skeletal fragility [2-4]. Age-related 

reductions in bone volume fraction manifest themselves in more rod-like trabeculae, 

decreased thickness, and increased anisotropy [7-9]. These changes lead to decreases in 

the mechanical properties of bone and contribute to increased fracture risk.  

 Microdamage also contributes to the integrity of the bone tissue matrix and is 

known to accumulate with increasing age [10-13]. Testing of bone samples has shown 

that this microdamage contributes to decreases in biomechanical properties including 



 20 

strength, stiffness, and toughness [14-17]. However microdamage is a naturally occurring 

process that occurs in vivo [18] and is considered to activate a targeted remodeling 

process [19]. Therefore, the accumulation of microdamage is associated with slow or 

suppressed remodeling that concomitantly results in increased bone tissue age and 

increased mineralization [4, 20-21]. It is believed that the homogeneous nature of the 

mineralized matrix due to improper remodeling allows crack propagation to occur [22-

23]. This is because bone is naturally a composite material that provides natural barriers 

to crack growth [24]. Microdamage progression could also occur as a result of the 

accumulation of microdamage. Since damage is not repaired as efficiently, there is an 

increased presence of microcracks susceptible to crack growth which may lead to 

complete fracture [25]. While the exact role of microdamage in determining fracture risk 

is unclear, it is understood that it contributes to the decreases in bone mechanical 

properties and the maintenance of proper bone function through repair and remodeling 

[21, 26]. 

 The goal of this aim was to determine the changes in microdamage progression in 

old bone versus young bone. It was hypothesized that due to the increased propensity of 

older bone to form microdamage in vivo, there would be a greater incidence of 

microdamage progression in old females when compared to young females. 

Materials and Methods 

Specimen Preparation 

 Fresh frozen trabecular bone specimens were harvested from the distal femur of 

six human female cadavers and divided into two groups: young (ages 29, 32, and 42) and 

old (ages 71, 77, and 82) (n = 3 per group). The researcher was blinded to these groups 
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until post-hoc analysis. Donors did not have any known history of metabolic bone 

diseases, osteoporotic fractures, or metastatic cancers. Cylindrical cores 5 mm in 

diameter were extracted from each donor under constant irrigation such that the principal 

material direction was approximately aligned with the loading axis. Samples were 

wrapped in saline soaked Kimwipes and stored at -20°C until needed [27]. One core from 

each donor (n = 3 cores/group) was selected and allowed to thaw overnight at 4°C prior 

to preparation for testing. Using a diamond saw (Isomet 1000 Precision Saw, Buehler 

Ltd., USA), cores were sized to a final length of 18 mm. Trabecular specimens were 

cleaned of marrow using a water-pik (WP-72W, WaterPik, USA) to minimize artifacts in 

microcomputed tomography (micro-CT) scans and to improve fluorescent stain 

penetration. Samples were then glued into custom stainless steel endcaps to reduce end 

artifacts during mechanical testing [28], resulting in an effective gauge length of 13 mm 

[29]. 

Micro-CT Imaging 

 Using a micro-CT system (μCT 40, Scanco Medical, Bassersdorf, Switzerland), 

each sample was scanned in the region between the top and bottom endcaps at a voxel 

resolution of 16 µm. A threshold was chosen to isolate bone from the background and 

any remaining soft tissue. Using built-in scanner software, bone volume fraction 

(BV/TV), degree of anisotropy (DA), bone mineralization (measured in mg-HA/cm
3
), 

and trabecular architecture parameters were determined. Microarchitecture parameters 

included trabecular number (Tb.N, mm
-1

), trabecular thickness (Tb.Th, mm), trabecular 

spacing (Tb.Sp, mm), connectivity density (Conn.D, mm
-3

) and structural model index 
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(SMI). All samples were scanned in a 0.9% physiological saline solution with 10 μmol/L 

protease inhibitor (PI, E-64, Sigma Chemical) to retard tissue degradation. 

Mechanical Testing 

 After micro-CT imaging, all specimens were loaded following two different 

protocols using a servo-hydraulic mechanical testing system (Mini Bionix 858, MTS 

Corp.). To ensure the presence of microcracks within each sample, the first test used a 

modified stress relaxation test [30]. Following nondestructive preconditioning for 3 

cycles to 0.1% strain, samples were loaded under uniaxial compression at a rate of 0.5% 

strain/s to 0.8% strain and held at constant strain for 3 hours. Young’s modulus was 

measured as the best linear fit of the ramp-up to 0.8% strain. Apparent strains were 

calculated using the displacement output from the testing system and the effective gauge 

length of the specimen measured using digital calipers. 

 In the second test, samples were mechanically tested in cyclic compression under 

load control according to a protocol adapted and modified from literature [31-32]. 

Specimens were preconditioned by loading under displacement control using a sinusoidal 

waveform for 10 cycles between 0.0% strain to 0.5% strain at a frequency of 2 Hz. This 

strain value falls below the yield strain determined during preliminary tests (1.1% strain) 

and was not expected to produce any microdamage [33]. The initial modulus, E0, was 

defined as the slope of the best linear fit of the tenth loading cycle. This value was then 

used with the preload value (10 N) to define the maximum load corresponding to the 

normalized stress level, Δσ/E0 = 0.005, applied during testing.  Cyclic testing was 

performed at 2 Hz to a maximum strain of εmax = 0.8% or until 150,000 cycles was 

reached. Apparent strains were calculated using a second gauge length measurement 
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conducted prior to testing. Throughout all mechanical tests, samples were immersed in a 

0.9% physiological saline solution with 10 μmol/L PI to minimize tissue degradation. It 

is understood that testing bone dry results in an increase in Young’s modulus and strength 

but a decrease in toughness and thus would negatively affect mechanical testing results 

[34]. 

Microdamage Identification 

 In order to label and identify initial plus preexisting microcracks from propagated 

microcracks, an established sequential fluorescent staining method was utilized [35-36]. 

Preliminary studies verified the protocol by showing no replacement of stains (Figure 

2.1). Samples were stained with 0.02% Alizarin Complexone (A3882, Sigma-Aldrich) 

after the first mechanical test to capture preexisting damage, including damage formed in 

vivo and during sample preparation. To remove any unbound alizarin stain, samples were 

rinsed in deionized water for 1 hour. After cyclic testing, specimens were stained with 

0.005% calcein (C-0875, Sigma-Aldrich) to label microdamage created or propagated 

due to cyclic compressive loading. Again, specimens were rinsed in deionized water for 1 

hour to remove excess calcein stain. All specimens were gently shaken with endcaps 

attached in staining solutions containing 10 μmol/L PI at atmospheric pressure and at 4°C 

for 8 hours. Following staining in calcein solution, samples were dehydrated in a series of 

graded alcohols and embedded in methyl methacrylate (MMA). MMA blocks were 

sectioned using a precision diamond saw to create longitudinal slices 130-200 µm thick 

(n = 7 per age except age 77, n = 6) which were mounted onto glass slides using the non-

fluorescing Eukitt’s mounting medium (EM Sciences, USA). 
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 Initial damage and cyclic load induced damage were quantified at 100X 

magnification with grayscale images taken under red and green epifluorescence, 

respectively. Microdamage types were identified according to a categorization adapted 

from literature [33, 37] (Figure 2.2). Microdamage propagation was assessed by a 

qualitative evaluation of stain intensity via the microscope and an overlapped image of 

the initial damage and cyclic load induced damage. Four types of microcrack progression 

were identified and categorized (Figure 2.3). The bone area of each slide was determined 

using image analysis software (AxioVs40 V4.7.1.0, Carl Zeiss Imaging Solutions GmbH) 

under bright field and at 40X magnification. All microdamage was quantified as damage 

events and normalized to each respective slide bone area. In order to avoid counting 

microcrack artifacts created during preparation, microdamage and bone area were valid 

only within a region of interest (ROI) defined as the rectangular area 500 µm from each 

bone edge. 
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Figure 2.1: Fluorescent staining method validation. Bone autofluoresces under UV light 

due to the high collagen I content [38]. a & b) This autofluorescence does not interfere 

with microdamage identification because it fluoresces at a lower intensity. Representative 

image of bone stained with c) alizarin (red) and d) calcein (green). e) There is no 

replacement of alizarin stain by calcein stain as seen by the d) lack of bright green color 

in areas where c) red is bright.  There is slight bleed through of calcein fluorescence 

when viewed under red epifluorescence as evidenced by the slight change in color from 

red to red-orange. 
 

 
 

Figure 2.2: Microdamage description types. i. Linear damage including a) single crack 

and b) parallel cracks, ii. Diffuse (crosshatch) damage including c) equal crosshatching 

and d) large area distribution, iii. Severe damage including e) one primary crack with 

minor secondary cracks and f) through-thickness cracks. [37] 

a 

b 

c 

d 

e 
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Figure 2.3: Microdamage progression classifications. Alizarin staining (red) indicates 

initial damage. Calcein staining (green) indicates cyclic load induced damage. a) 

Extension progression: microdamage that extends from existing cracks; b) Widening 

progression: overlapping stained cracks result in a bright yellow color that reflect a 

widening of initial damage; c) Surface originating progression: cyclic load induced 

cracks that start at surface damage and progress into trabeculae; d) Combination 

progression: microdamage progression that includes two or more of the other classes  
  

a b 

c d 
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Statistics 

 T-tests, ANOVA analyses, and Tukey’s pairwise comparisons (Minitab Inc., 

USA) were used to determine statistical significance for trabecular microdamage, 

architecture, morphology, mineralization, and mechanical properties. Significance was 

defined as p < 0.05 for all statistical tests. Microdamage comparisons were based on each 

slide from each donor. For the donor aged 77, an average value for the 6 slides was used 

as a replacement for the missing seventh slide. All data presented are in the form of mean 

± standard error. 

Results 

Trabecular Architecture 

 Nearly all trabecular architectural parameters showed no statistical differences 

between groups (Figures 2.4 and 2.5). Bone volume fraction was the same between 

young bone (0.17 ± 0.03) and old bone (0.16 ± 0.01). Trabecular thickness in young 

samples (150.0 ± 29.0 µm) and old samples (137.8 ± 5.5 µm) also showed no differences. 

Trabecular number was greater in older bone (1.56 ± 0.03 mm
-1

) than in younger bone 

(1.45 ±0.06 mm
-1

); similarly SMI was higher in older specimens (1.57 ± 0.09) than in 

younger specimens (1.23 ± 0.16), but differences were not significant. Trabecular spacing 

was found to be greater in young bone (0.64 ± 0.02 mm) when compared to old bone 

(0.59 ± 0.01 mm), but this was not significant. A significantly lesser degree of anisotropy 

(p = 0.03) along with an indication towards greater connectivity density (p = 0.07) and 

greater average mineralization (p = 0.09) were found when comparing older samples to 

younger samples. 
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Figure 2.4: Trabecular architecture from micro-CT analysis for young (ages 29, 32, 42) 

and old (ages 71, 77, 82) age groups. No differences found in bone volume fraction 

(BV/TV), trabecular thickness (Tb.Th), and structure model index (SMI). Decreased 

degree of anisotropy (DA) in older bone (* indicates p < 0.05).  
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Figure 2.5: Trabecular architecture and average mineralization from micro-CT analysis 

for young (ages 29, 32, 42) and old (ages 71, 77, 82). No differences in trabecular 

number (Tb.N), trabecular spacing (Tb.Sp), connectivity density (Conn.D), and average 

mineralization. Non-significant higher Conn.D (p = 0.07) and average mineralization (p = 

0.09).  
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Mechanical Properties 

 Although not significantly different (p = 0.54), samples from the young group 

(819.0 ± 234.0 MPa) were found to have a greater Young’s modulus on average – 

measured from the first mechanical test – when compared to samples from the old group 

(638.8 ± 81.0 MPa). Similarly no differences were found in the initial cyclic loading 

modulus (p = 0.51) and in the associated percent modulus reduction (p = 0.76). Younger 

specimens on average lasted longer during cyclic testing (116,963 ±56,705 cycles) than 

older specimens (15,729 ± 14,413 cycles), but this difference was not significant (p = 

0.23). Data can be found in Table 2.1. 
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Table 2.1: Mechanical testing parameters for young and old trabecular bone. Values 

presented as mean ± SE. 

 

Parameter Young Old 

P-value 

(t-test) 

Modulus (initial load, MPa) 819.0 ± 234.0 638.8 ± 81.0 0.54 

Modulus (pre-cyclic load, MPa) 410.1 ± 71.1 383.4 ± 25.5 0.76 

Modulus drop (%) 44.1 ± 10.3 39.9 ± 5.7 0.68 

Cycles 116963 ± 56705 15729 ± 14413 0.23 
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Microdamage 

 Two dimensional slide bone area was greater in the young group (7.50 ± 0.28 

mm
2
) than in the old group (6.70 ± 0.38 mm

2
); however this was not statistically different 

(p = 0.10, Figure 2.6). Analysis of initial damage (young: 1.50 ± 0.18 vs. old: 2.07 ±0.15, 

damage events/mm
2
) showed significant differences (p = 0.02), but a non-significant 

difference (p = 0.05) was found in cyclic load induced damage (young: 0.74 ± 0.10 vs. 

old: 1.24 ± 0.11, damage events/mm
2
) (Figure 2.7). Both young and old bone (p < 0.001) 

had more initial damage than cyclic load induced damage.  

 Microdamage progression was classified into four different categories (Figure 

2.3). Microdamage was found to extend from initial damage (extension propagation) 

either by increasing the length of cracks, by increasing the extent of cracks perpendicular 

to the primary crack direction, or a new crack. Cyclic loading was also found to induce 

widening of initial damage (widening propagation) identified by a near overlap of 

fluorescence resulting in a bright yellow color. Cracks also formed from areas of damage 

at trabecular surfaces and extended into the trabecula (surface to crack propagation). 

Other forms of microdamage progression were a combination of the three 

aforementioned types (combination propagation). 

 Greater incidences of total microdamage progression were found in older samples 

(1.18 ± 0.11 damage events/mm
2
) when compared with younger samples (0.68 ± 0.10 

damage events/mm
2
) (p < 0.001) (Figure 2.8). This difference remained even after 

normalizing for the amount of initial damage (p = 0.02, Figure 2.9). No differences were 

found in the amount of de novo damage as a result of cyclic loading. All propagated 

damage classes were found in young and old bone with widening the most prevalent on 
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average and surface damage originating cracks the least prevalent in old (p < 0.001) and 

young bone (p < 0.01 compared to widening only) (Figure 2.10). Although there was a 

general increase in the amount of microcrack propagation classes except for surface 

originating damage, changes were only significant for combination type progression (p = 

0.04). Assessment of these progression categories revealed no difference in the 

proportion of propagated damage types between age groups. An analysis of microdamage 

categories adapted from literature [33, 37] – linear, diffuse, and severe types (Figure 2.2) 

– revealed preferential crack propagation towards similar damage types (Figure 2.11) 

(e.g. linear to linear). This is more apparent in the older bones (p < 0.001) than the 

younger bones (only diffuse to diffuse, p > 0.05) when a comparison between the 

different possibilities was made (e.g. linear to linear, linear to diffuse, linear to severe). 

There was also a greater amount of severe to severe and diffuse to diffuse microdamage 

propagation in older bone (p < 0.001) when compared to younger bone. 
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Figure 2.6: Trabecular slide bone area for young and old samples. No differences were 

found.  
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Figure 2.7: Total microdamage in young and old bone. Old bone had more initial damage 

than young bone ($ indicates p < 0.05). There was more cyclic load induced damage than 

initial damage in both age groups (* indicates p < 0.001). Old bone tended to have more 

cyclic induced damage than young bone (p = 0.05).  
 

$

*

*

0

0.5

1

1.5

2

2.5

Initial Damage Cyclic Load Induced Damage

D
am

ag
e

 E
ve

n
ts

 /
 m

m
2

Young Old



 36 

 
Figure 2.8: Microdamage progression and de novo damage for young and old bone. Old 

bone had more microdamage progression than young bone ($ indicates p < 0.001). 

Microdamage progression was greater than de novo damage in both age groups (* 

indicates p < 0.001).  
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Figure 2.9: Microdamage progression normalized to initial damage. Older bone still had 

more progression damage after normalization (* indicates p = 0.02). 
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Figure 2.10: Distribution of microdamage progression classes. Surface originating class 

of microdamage progression was the least prevalent (* indicates p < 0.01 when compared 

to age matched surface originating class). Combination progression class was greater in 

old bone ($ indicates p = 0.04).  
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Figure 2.11: Microdamage progression characterization. Microdamage tends to propagate 

from and to the same microdamage types. No differences were found between young and 

old except with diffuse-diffuse and severe-severe sub-types where old bone had more 

incidences (* indicates p < 0.001). Within the old group, linear-linear and diffuse-diffuse 

sub-types occurred less than severe-severe ($ indicates p < 0.001).  
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Discussion 

 Skeletal fragility is characterized by low bone mass, altered trabecular 

architecture, and compromised tissue matrix properties leading to increased fracture risk 

[21, 26]. Age-related accumulation of microdamage contributes to changes in the 

mechanical integrity of bone tissue, reducing apparent level mechanical properties [10, 

16]. However its role in increasing fracture risk is unclear. Furthermore, studies 

investigating microdamage progression have mainly looked at cortical bone and have 

largely assumed similar damage characteristics in trabecular bone. In this study, the age-

related effects on microdamage progression in trabecular bone were analyzed as a means 

to assess the quality of bone tissue. Microdamage was induced with an initial stress 

relaxation compression test followed by low stress, high cycle fatigue loading. It was 

found that amounts of microdamage progression occurred more in old bone, thus 

reflecting compromised tissue matrix properties and a reduced resistance to microcrack 

growth. 

 Although statistical analysis of mechanical testing data showed no differences, the 

data shows interesting results. On average the young bone exhibited a 24% greater elastic 

modulus than old bone, as expected. However, the elastic modulus as measured prior to 

cyclic loading showed similar values between age groups, thus indicating a larger 

modulus reduction after initial damage formation for the young bone. This implies that a 

greater amount of microdamage was formed in younger bone due to the first mechanical 

test [15, 39]. Concurrently, this reduction in modulus may reflect the low amounts of 

preexisting damage (damage created in vivo) in young bone followed by a rapid increase 

due to applied loads in order to dissipate local stresses and strains and prevent fracture. 
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Since the amounts of preexisting damage were combined with the damage formed by 

initial compressive loading, it is not possible to determine exactly which age group had 

more initial test induced damage. Despite this reduction in stiffness, young bone lasted 

longer on average during cyclic loading, implying a greater fatigue life compared to old 

bone. 

 Microarchitectural parameters showed expected results on average for age-related 

changes in BV/TV, SMI, and Tb.Th with an indication towards increase in 

mineralization. The discrepancies in the remaining parameters (Conn.D, Tb.N, Tb.Sp, 

and DA) require further discussion. An increase of SMI values towards 3 reflects more 

rod-like trabeculae and is associated with aging. Since the young trabecular bone is more 

plate-like, the changes due to aging are likely a perforation through resorption of existing 

trabecular plates [40-41]. With plates being remodeled into rods, the greater trabecular 

number and connectivity density and lower trabecular separation are easily explained by 

the presence of more trabecular rods. This may also explain the significantly lower 

degree of anisotropy in old bone. It is known that remodeling is imbalanced with age and 

consequently, bone resorption is not as targeted or as effective [20]. The gradual thinning 

of existing rods and transformation of plates to rods may have created a structure that is 

considerably more isotropic than it was before.  However, continued inefficient 

remodeling would eventually remove redundant trabecular struts, presumably creating a 

more anisotropic structure. Another explanation may be the location the bone cores were 

extracted from. An effort was made to study only trabecular cores taken from the outer 

edges of the distal femur where trabecular bone is most dense. Even so, slight variability 
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in the original location of the samples may be attributed to the difference, but it is not 

likely. 

 As expected, more initial damage was present in old bone when compared to 

young bone. This damage includes both in vivo and initial test-induced microdamage and 

thus no conclusions can be drawn regarding preexisting damage and age. Cyclic loading 

resulted in less microdamage than was found for initial damage in both age groups. This 

result in conjunction with the greater amount of microdamage progression in old bone 

suggests that initiation of de novo microcracks does not occur to alleviate local stresses 

and strains. Rather, microcracks are allowed to grow as a result of applied loads. This is 

contrary to a study that used finite element modeling to suggest that further microdamage 

is formed in response to continued loading [42]. However results presented here showing 

microdamage progression agrees with a study conducted by Wang et al [43]. 

Consequently, the greater amount of microdamage progression present in old bone would 

indicate a compromised tissue matrix that is unable to arrest crack growth. However, it is 

possible that the multiple loads “saturated” the sample being tested with microdamage. 

This would suggest that microcracks could not form anywhere else within the trabecular 

core to diffuse the applied loads and thus microdamage progression was inevitable. 

Regardless, the results show that old bone has more microdamage progression even when 

normalized to the amount of initial damage, thus reflecting a poorer tissue matrix.  

 Further characterization of microdamage progression was conducted to determine 

if the different classes observed were related to aging. No differences were found 

between groups, but it is interesting to note that surface originating damage progression 

occurs very infrequently regardless of age. This may be due to the aforementioned 
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“saturation” of microdamage in the bone. There was also a greater amount of 

combination type microdamage progression in old bone versus young bone, possibly 

indicating a greater deleterious effect from this class of damage propagation. The results 

also show a preference of microdamage to progress to a similar type of microdamage (i.e. 

linear to linear, diffuse to diffuse, severe to severe). No known studies in trabecular bone 

have characterized microdamage progression in this manner. 

 It is important to consider the limitations of this study. The small sample size 

reduced the power of comparisons as reflected in the mechanical testing and micro-CT 

data. However the focus of this study was to investigate microdamage progression and 

sufficient data was available to conduct this comparison. The use of three stains to label 

preexisting, initial test-induced and cyclic load induced damage would have provided 

further information in order to characterize the behavior of microdamage progression 

with respect to age. A preliminary study was conducted to investigate this, but it was 

found that the use of three fluorochromes was not clear enough to distinguish three 

different damage time points. Finite element modeling has been used previously in our 

lab to correlate stresses and strains to microdamage initiation. This is a linear model and 

is not applicable to the case of microdamage progression which would require a non-

linear model [44] not established within our lab. 

 In this aim, the age-related changes in microdamage progression were 

investigated as a means to assess the tissue matrix properties. It was found that old bone 

had more microdamage progression even when normalized to amounts of initial damage. 

This reflects compromised bone matrix properties in the old bone and indicates increased 

propensity for further damage accumulation and propagation to potential fracture.  
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CHAPTER 3 

EFFECTS OF ANTI-RESORPTIVE AGENTS ON 

BIOMECHANICAL PROPERTIES AND MICRODAMAGE 

INITIATION IN RAT BONE 

 

Introduction 

 Osteoporosis is a disorder affecting the bone resulting in low bone mass and 

deterioration of bone microarchitecture leading to an increased risk and incidence of 

fracture [1]. Over 2 million cases of fracture costing an estimated $17 billion were 

predicted for 2005 [2]. These numbers are expected to increase by nearly 50% by the year 

2025. There are many treatments for osteoporosis, including the use of the 

pharmacological therapies bisphosphonates (e.g. alendronate, ALN) and selective 

estrogen receptor modulators (SERMs, e.g. raloxifene, RAL). These drugs are 

categorized as anti-remodeling – more specifically anti-resorptive – agents due to their 

inhibition of the resorption of bone. This action results in increased bone mass and, 

clinically, reduced fracture risk [3-6]. However the similarities between the two drugs 

end there. In clinical trials, raloxifene (RAL) was shown to increase bone mineral density 

(BMD) by less than 3% in vertebrae but reduce the fracture risk by 39% [6]. Trials with 

alendronate (ALN) showed increases in BMD at various sites up to nearly 14% and a 

decrease in fracture risk of 36% [3, 5]. However the contribution of BMD to reduction in 

fracture risk was 4% in RAL and 17% for ALN [7-8] leaving 83-96% of the reduction 
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unaccounted for. This suggests differing mechanisms by which the two drugs affect the 

biomechanical properties of bone. 

 Studies in a dog model have provided insight into the variable effects of clinically 

relevant doses of RAL and ALN. Similar to clinical results, it was shown that ALN 

treatment increases bone volume fraction (BV/TV) significantly and suppresses bone 

turnover considerably resulting in increased microdamage accumulation [9]. The effects 

on mechanical properties showed increased vertebral stiffness but no material property 

improvements. However a study using 6 times the dose recommended clinically showed 

a 21% reduction in vertebral toughness [10]. This result is supported by a 3 year study 

showing decreased toughness with ALN treatment when compared with vehicle treated 

dogs [11]. On the other hand, RAL has been shown to improve vertebral strength 

independent of bone density, prevent microdamage accumulation, and to improve 

ultimate stress, modulus, and toughness in trabecular bone of the femoral neck [12-13]. A 

study in an ovariectomized rat model showed improvements in bone strength over vehicle 

treatment in the lumbar vertebrae and the femoral neck [14]. Although treatment with 

ALN increases bone volume considerably over treatment with RAL, the beneficial effects 

of RAL on material properties appears to be greater than ALN. Combining the two drugs 

may provide an additive effect that would provide both the structural and material 

improvements to bone.  

 A clinical study investigated this additive effect on BMD and biochemical 

markers of bone turnover in postmenopausal women with osteoporosis [15]. The results 

showed an increase in BMD with combined RAL and ALN treatment over either therapy 

alone in the femoral neck, but significant differences were found only with RAL in the 
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lumbar spine. They also found that combination treatment suppressed bone turnover more 

than either drug alone, possibly explaining the increase in BMD. From these results they 

concluded that the contributions of RAL and ALN were independent and additive. 

 The goal of this aim was to investigate the effects of combination treatment with 

RAL and ALN in a rat ovariectomized model on biomechanical properties. This included 

determining the structural properties and derived material properties of femurs and 

vertebrae to understand the apparent effects of treatment. Further study was conducted to 

determine the local tissue matrix properties as assessed through microdamage 

quantification. Secondary to this goal was to determine the effects of RAL with and 

without the presence of estrogen and to determine the different effects on biomechanical 

properties affected by RAL and by ALN. It was hypothesized that the combination 

treatment would provide the additive effects of RAL and ALN through improved 

biomechanical properties and would prevent increased microdamage accumulation. It 

was further hypothesized that the effects of RAL would be greater in estrogen-replete rats 

and that RAL would improve material properties over ALN. 

Materials and Methods 

Drug Treatment 

 Lumbar vertebrae and femurs from female Sprague-Dawley rats were obtained 

from Indiana University courtesy of Dr. David Burr. A total of ninety-six six-month-old 

rats were randomized into 6 experimental groups (SHAM, SHAM+RAL, OVX, 

OVX+RAL, OVX+ALN, OVX+RAL+ALN; n = 16/group). Rats in all groups except the 

sham-operated groups (SHAM) underwent bilateral ovariectomy (OVX). After a post-

operative seventeen day acclimation period, the following compound administration was 
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delivered subcutaneously: RAL (0.5 mg/kg/day), ALN (1.0 μg/kg/day), RAL (0.5 

mg/kg/day) + ALN (1.0 μg/kg/day), or daily saline vehicle (in equivalent volume to the 

drug treatments). The doses for RAL and ALN represent the clinical treatment dose for 

postmenopausal women [12, 16-17]. One rat was removed from the OVX+ALN group 

due to illness. Rats were euthanized 16 weeks (approximately 4 remodeling cycles) after 

the initiation of treatment. 

Micro-CT Imaging 

 A total of 95 fresh frozen femurs from the right limb were thawed at room 

temperature and soft tissue was carefully removed. A section at the middiaphyseal point 

of each femur approximately 100 slices (about 1.6 mm) thick as identified using micro-

CT (μCT 40, Scanco Medical, Bassersdorf, Switzerland) was subsequently scanned at a 

voxel size of 16 µm (55 kVp, 145 µA). Bone was isolated from background using a 

threshold applied to all samples. Using built in scanner software, the distance from the 

centroid to the surface of bone in tension and the cross-sectional moment of inertia (MOI) 

were determined. Specimens were submerged in a 0.9% physiological saline solution to 

prevent dehydration during imaging. After scanning, each femur was wrapped in saline 

soaked gauze and stored at -20°C until mechanical testing. 

 A total of 79 L6 vertebrae (V1) were used to study architectural and 

biomechanical properties and 15 L5 vertebrae (V2) were used for microdamage analysis. 

In group V1, all groups were considered in subsequent analyses, but in group V2, 

SHAM+RAL was omitted because no changes were expected in microdamage from 

SHAM. All L5 and L6 vertebrae were isolated and carefully cleaned of soft tissue. 

Posterior elements and transverse processes were removed using a bone cutter to isolate 
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vertebral bodies and to facilitate micro-CT scanning. To ensure parallel ends for 

mechanical testing [9], cranial and caudal endplates were removed using a custom made 

fixture and a precision diamond saw (Isomet 1000 Precision Saw, Buehler Ltd., USA). 

Four L6 vertebrae in group V1 (SHAM, n = 1; ALN, n = 2; OVX+RAL+ALN, n = 1) 

were fractured during preparation and replaced with corresponding L5 vertebrae. 

Samples were then scanned at a voxel size of 12 µm (55 kVp, 145 µA) in a 0.9% 

physiological saline and 10 μmol/L protease inhibitor (PI, E-64, Sigma Chemical) 

solution to minimize tissue degradation. For each vertebra, the two dimensional (2D) 

images obtained from micro-CT scanning were analyzed for a representative vertebral 

bone cross sectional area (CSA), defined as the average of the 2D CSA measured at three 

different positions (25, 50, and 75% of the total vertebral height) [9]. Using standard 

scanner software, whole vertebra (cancellous and cortical bone) fractional volume 

(BV/TVwhole), trabecular bone volume fraction (BV/TVtrab), and trabecular 

microarchitecture were obtained for a 1.2 mm region directly above the caudal growth 

plate. This volume of interest was isolated to avoid any errors that would be introduced 

by the anterior venous foramen. Trabecular architecture values included trabecular 

number (Tb.N, mm
-1

), trabecular thickness (Tb.Th, mm), trabecular spacing (Tb.Sp, 

mm), connectivity density (Conn.D, mm
-3

), structural model index (SMI), and 

mineralization (measured in mg HA/cm
3
). The trabecular compartment was separated 

from the cortical shell using an adapted segmentation algorithm “dual threshold” [18].  

Mechanical Testing 

 Femurs were thawed at room temperature and tested using a standard three-point 

bending test to failure using a servo-hydraulic mechanical testing system (858 Mini 



 53 

Bionix II, MTS Corp.). The right femoral shafts were centrally loaded under 

displacement control at a rate of 0.6 mm/min. Custom made fixtures with rounded 

supports of 1.08 mm thicknesses were set to a bottom span of 19 mm. Structural, or 

extrinsic, properties (i.e. ultimate load, UL; stiffness, S; work to ultimate load, W) were 

determined from the load-displacement curve. Derived material, or intrinsic, properties 

(i.e. ultimate stress, σult; elastic modulus, E; yield stress, σyield; and toughness, U) were 

calculated from stress and strain values determined using standard beam-bending 

equations for 3-point bending [19]: 

  
   

  
 

  
    

  
 

Where L is the load, s is the span, c is the distance from the centroid to the surface of 

bone in tension, I is the moment of inertia around the axis of bending, and d is the 

displacement. One sample from the OVX group fractured prior to mechanical testing and 

was removed from analysis. 

 Group V1 vertebrae were tested under uniaxial compression to failure at a rate of 

0.5 mm/min on a servo-hydraulic mechanical testing system [20]. All samples were 

attached to the compression platens with a minimal amount of glue to prevent slipping 

during testing. Structural properties (i.e. ultimate load, UL; stiffness, S; and work to 

failure, W) were determined from load-displacement data.  Derived material properties 

(i.e. normalized stiffness, nS; normalized ultimate load, nUL; normalized work to failure, 

nW) were determined by normalizing the structural properties to vertebral geometry and 

BV/TVwhole using the following equations [9, 12]: 
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Where h is the vertebral height measured using digital calipers before mechanical testing. 

 Immediately following micro-CT scanning, group V2 vertebrae were loaded 

according to a previously established uniaxial compression testing protocol [21] adapted 

for this study. Samples were glued to the stationary compression platen and preloaded 

under displacement control to ensure contact between the loading platen and the cranial 

surface of the vertebra. Following 3 cycles of preconditioning to 0.1% strain, specimens 

were loaded at 0.5% strain/s to a final strain of 1.3% and held there for 3 hours to ensure 

microdamage formation. Preliminary studies showed that 1.3% strain was the yield strain, 

but loading to this point did not incur significant amounts of trabecular fracture and thus 

was used. Samples were immersed in a 0.9% physiological saline and 10 μmol/L PI 

solution throughout mechanical testing. 

Microdamage Identification 

 Only group V2 vertebrae were analyzed for the presence of microdamage using 

an established sequential labeling method [22-24]. The researcher was blinded to 

treatment groups until post-hoc analysis. Prior to mechanical testing, samples were 

stained with 0.02% Alizarin Complexone (A3882, Sigma-Aldrich) to label preexisting 

microdamage, including microcracks formed in vivo and during specimen preparation. 

After mechanical testing, vertebrae were stained with 0.005% calcein (C-0875, Sigma-
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Aldrich) to label test induced microdamage. All specimens were gently shaken in staining 

solutions with 10 µmol/L PI at 4°C for 8 hours under atmospheric pressure. After each 

staining step, a 1 hour rinse in deionized water was performed to remove any excess 

unbound stain. After calcein labeling, vertebrae were dehydrated in a series of graded 

alcohols and embedded in methyl methacrylate (MMA). MMA blocks were sectioned 

into 100-150 µm longitudinal slices (n = 9 slides/group) using a precision diamond saw 

resulting in coronal slices of vertebrae and mounted onto glass slides with the non-

fluorescing Eukitt’s mounting medium (EM Sciences, USA). 

 Slides were imaged under a 10X objective utilizing fluorescence microscopy. 

Preexisting and test induced microcracks were quantified with grayscale images under 

red and green epifluorescence, respectively. Damage was categorized according to a 

modified microdamage identification method [24-25]. The trabecular bone area of each 

slide was determined using image analysis software (AxioVs40 V4.7.1.0, Carl Zeiss 

Imaging Solutions GmbH) under bright field and a 4X objective. Microcracks were 

quantified per slide as total damage events normalized to each respective slide trabecular 

bone area. A region of interest (ROI) 500 µm from the cranial and caudal ends and 

approximately 100 µm from the cortical shell was used for microdamage counting.  

Study Groups 

Experimental groups were further broken down into 3 different study groups to 

address different objectives during post-hoc analysis (Figure 3.1). Objective 1 (SHAM, 

OVX, SHAM+RAL, OVX+RAL) was to test the effects of RAL in estrogen replete 

versus estrogen deficient rats. Objective 2 (SHAM, OVX, OVX+RAL, OVX+ALN) was 

to address the beneficial effects of RAL, but not ALN, on material properties. Finally, 
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objective 3 (SHAM, OVX, OVX+RAL, OVX+ALN, OVX+RAL+ALN) was to 

determine the beneficial, if any, effects introduced by combination treatment of RAL and 

ALN. 
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Figure 3.1: A diagram of the experimental design. a) Objective 1 compares SHAM, 

OVX, SHAM+RAL, and OVX+RAL to assess the hypothesis that the positive effects of 

RAL on bone material properties will be greater in estrogen-replete than in estrogen-

deficient rats. b) Objective 2 compares SHAM, OVX, OVX+RAL, and OVX+ALN to 

evaluate the hypothesis that RAL will improve material properties but not ALN. c) 

Objective 3 compares SHAM, OVX, OVX+RAL, OVX+ALN, and OVX+RAL+ALN to 

determine if the combination treatment of RAL and ALN will improve both structural 

and material properties of bone. 
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Statistics 

 After verification of normality using Anderson-Darling normality tests, 

significant differences between groups for biomechanical properties and 

microarchitecture were determined using one-way analysis of variance (ANOVA) tests 

followed by Fisher’s pairwise comparisons. Microdamage comparisons were made using 

regression analysis with Tukey’s pairwise comparisons. If the normality criterion was not 

met, the Kruskal-Wallis test was utilized to look for significance followed by Mann-

Whitney pairwise comparisons. Significance was defined as p < 0.05 for all significance 

tests. Statistics presented are in the form of mean ± standard error. All statistics were run 

using MINITAB software (Minitab, Inc., USA). 

Results 

Objective 1: RAL with and without Estrogen 

 Femoral volumetric BMD (vBMD) was different between SHAM and 

OVX+RAL only (p < 0.01) (Table 3.1). No differences were found in MOI between 

groups (p > 0.50). Only ultimate load contained differences between groups (p < 0.01): 

SHAM v OVX, SHAM+RAL v OVX+RAL, SHAM v OVX+RAL, SHAM+RAL v 

OVX. Stiffness and energy to failure comparisons between groups were not significant (p 

> 0.05). Ultimate stress was significantly higher in the SHAM group than OVX (p = 

0.01), SHAM+RAL (p = 0.04), and OVX+RAL (p < 0.01). No differences were found in 

toughness or elastic modulus (p > 0.05). 

 In the vertebrae, ovariectomy compromised BV/TV, trabecular architecture, and 

mineralization values when compared with other groups (p < 0.001) (Table 3.2). SHAM 

values were not found to be different from SHAM+RAL values (p > 0.05) for any 
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parameter. However OVX+RAL was significantly different from SHAM+RAL across all 

values except mineralization (p < 0.001). OVX+RAL returned mineralization levels to 

SHAM levels (p < 0.001). 

 Treatment with RAL in vertebrae did not significantly improve any structural or 

derived material properties when compared with controls (p > 0.05) (Table 3.3). The 

SHAM group had greater ultimate load and stiffness than the OVX group (p < 0.05). 
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Table 3.1: Femur micro-CT results and mechanical properties for Objective 1. Values 

presented as mean ± SE. vBMD, volumetric bone mineral density; MOI, moment of 

inertia. (
A
 significantly different from SHAM, 

B
 significantly different from OVX, 

C
 

significantly different from SHAM+RAL) 

 

 
SHAM OVX SHAM+RAL OVX+RAL P-value 

vBMD (mg HA/cm
3
) 1458.7 ± 8.0 1456.3 ± 11.4 1454. 4 ± 16.7 1447.7 ± 13.0

A
 < 0.01 

MOI (mm
4
) 6.37 ± 0.19 6.59  ± 0.22 6.63 ± 0.21 6.27 ± 0.20 0.54 

Ultimate Load (N) 137 ± 3 130 ± 2
A
 138 ± 2

B
 128 ± 3

A,C
 < 0.01 

Stiffness (N/mm) 456 ± 12 444 ± 7 452 ± 14 418 ± 11 0.07 

Energy to Failure (mJ) 56.6 ± 2.5 47.7 ± 2.7 56.2 ± 2.9 52.6 ± 2.0 0.06 

Ultimate Stress (MPa) 178 ± 2 167 ± 3
A
 173 ± 2

A
 169 ± 2

A
 < 0.05 

Modulus (GPa) 10.31 ± 0.31 9.74 ± 0.27 9.81 ± 0.28 9.61 ± 0.26 0.31 

Toughness (MPa) 4.23 ± 0.21 3.59 ± 0.20 4.02 ± 0.17 4.02 ± 0.15 0.09 
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Table 3.2: Trabecular architecture of the vertebrae assessed by micro-CT for Objective 1. 

Values presented as mean ± SE. BV/TV, bone volume fraction; Tb.Th, trabecular 

thickness; Tb.N, trabecular number; Tb.Sp, trabecular separation; Conn.D, connectivity 

density; SMI, structure model index. (
A 

significantly different from SHAM, 
B
 

significantly different from OVX, 
C
 significantly different from SHAM+RAL). 

 

 
SHAM OVX SHAM+RAL OVX+RAL P-value 

BV/TV 0.476 ± 0.010 0.300 ± 0.006
A
 0.457 ± 0.013

B
 0.402  ± 0.008

A,B,C
 < 0.001 

Tb.Th (mm) 0.090 ± 0.001 0.074 ± 0.001
A
 0.088 ± 0.002

B
 0.083  ± 0.001

A,B,C
 < 0.001 

Tb.N (mm
-1

) 5.50 ± 0.07 4.31 ± 0.07
A
 5.39 ± 0.11

B
 4.97 ± 0.09

A,B,C
 < 0.001 

Tb.Sp (mm) 0.163 ± 0.003 0.223 ± 0.004
A
 0.166 ± 0.004

B
 0.186 ± 0.004

A,B,C
 < 0.001 

Conn.D (mm
-3

) 57.1 ± 2.2 82.6 ± 3.3
A
 62.4 ± 2.5

B
 70.5 ± 3.2

A,B,C
 < 0.001 

SMI -2.31 ± 0.16 -0.22 ± 0.06
A
 -2.02 ± 0.16

B
 -1.41 ± 0.09

A,B,C
 < 0.001 

Mineralization 

(mg HA/cm
3
) 

1233.8 ± 2.8 1219.5 ± 3.8
A
 1236.2 ± 2.3

B
 1230.1 ± 2.0

B
 < 0.001 
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Table 3.3: Vertebrae mechanical properties for Objective 1. Values presented as mean ± 

SE. nUL, normalized ultimate load; nS, normalized stiffness; nW, normalized work to 

failure. (
A
 significantly different from SHAM, 

B
 significantly different from OVX) 

 

 
SHAM OVX SHAM+RAL OVX+RAL P-value 

Ultimate Load (N) 340 ± 25 249 ± 17
A
 325 ± 28

B
 264 ± 17

A
 0.01 

Stiffness (N/mm) 5247 ± 602 3582 ± 387
A
 4956 ± 526

B
 3622 ± 330

A
 0.02 

Work to failure (mJ) 17.3 ± 1.7 14.7 ± 1.1 17.1 ± 1.9 18.5 ± 1.9 0.44 

nUL (MPa) 69.1 ± 4.4 68.2 ± 4.0 65.5 ± 4.9 61.8 ± 4.1 0.64 

nS (GPa) 5.68 ± 0.59 5.61 ± 0.57 5.40 ± 0.49 4.69 ± 0.43 0.29 

nW (MPa) 0.661 ± 0.067 0.694 ± 0.042 0.637 ± 0.061 0.791 ± 0.085 0.49 
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Objective 2: RAL versus ALN 

 No differences were found in femoral vBMD or MOI across groups (p > 0.05) 

(Table 3.4). Biomechanical testing of the femur showed increased ultimate load in 

OVX+ALN when compared to OVX and OVX+RAL (p < 0.01). Treatment with ALN 

resulted in greater stiffness values than RAL (p = 0.03), but no groups were different 

from OVX. OVX+RAL stiffness values were significantly lower than SHAM values (p = 

0.03). SHAM and OVX+ALN had greater energy to failure values than OVX (p = 0.02), 

but OVX+RAL did not. SHAM ultimate stress was greater than OVX and OVX+RAL (p 

= 0.01). No differences were found in toughness or modulus (p > 0.05). 

 Vertebral BV/TV was improved over OVX with ALN and RAL (p < 0.001), but 

the treatments were not different from each other (p > 0.05) and were significantly less 

than SHAM (p < 0.001) (Table 3.5). Both treatment groups had significantly different 

Conn.D than SHAM (p < 0.001) but only treatment with RAL produced different values 

from OVX (p < 0.001). All other trabecular architecture values saw similar differences as 

with BV/TV where both treatments improved microarchitecture from OVX but not 

enough to reach SHAM values (p < 0.001). Both OVX+RAL and OVX+ALN groups had 

greater mineralization than OVX (p < 0.01). 

 Vertebral mechanical tests showed no improvements with ALN or RAL treatment 

(p > 0.05) (Table 3.6). Ultimate load and stiffness were decreased with OVX compared to 

SHAM (p < 0.05), but no differences were found in derived material properties. 
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Table 3.4: Femur micro-CT results and mechanical properties for Objective 2. Values 

presented as mean ± SE. vBMD, volumetric bone mineral density; MOI, moment of 

inertia. (
A
 significantly different from SHAM, 

B
 significantly different from OVX, 

C
 

significantly different from OVX+RAL) 

 

 
SHAM OVX OVX+RAL OVX+ALN P-value 

vBMD (mg HA/cm
3
)

 
 1458.7 ± 8.0 1456.3 ± 11.4 1447.7 ± 13.0 1450.7 ± 4.6 0.05 

MOI (mm
4
)  6.37 ± 0.19 6.59  ± 0.22 6.27 ± 0.20 6.75 ± 0.26 0.40 

Ultimate Load (N)  137 ± 3 130 ± 2
A
 128 ± 3

A
 140 ± 2

B,C
 < 0.01 

Stiffness (N/mm)  456 ± 12 444 ± 7 418 ± 11
A
 459 ± 12

C
 0.03 

Energy to Failure (mJ)  56.6 ± 2.5 47.7 ± 2.7
A
 52.6 ± 2.0 57.6 ± 2.1

B
 0.02 

Ultimate Stress (MPa)  178 ± 2 167 ± 3
A
 169 ± 2

A
 173 ± 3 0.01 

Modulus (GPa)  10.31 ± 0.31 9.74 ± 0.27 9.61 ± 0.26 9.88 ± 0.40 0.40 

Toughness (MPa)  4.23 ± 0.21 3.59 ± 0.20 4.02 ± 0.15 4.12 ± 0.14 0.06 
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Table 3.5: Trabecular architecture of the vertebrae assessed by micro-CT for Objective 2. 

Values presented as mean ± SE. BV/TV, bone volume fraction; Tb.Th, trabecular 

thickness; Tb.N, trabecular number; Tb.Sp, trabecular separation; Conn.D, connectivity 

density; SMI, structure model index. (
A
 significantly different from SHAM, 

B
 

significantly different from OVX) 

 

 
SHAM OVX OVX+RAL OVX+ALN P-value 

BV/TV  0.476 ± 0.010 0.300 ± 0.006
A
 0.402  ± 0.008

A,B
 0.395 ± 0.008

A,B
 < 0.001 

Tb.Th (mm) 0.090 ± 0.001 0.074 ± 0.001
A
 0.083  ± 0.001

A,B
 0.080 ± 0.001

A,B
 < 0.001 

Tb.N (mm
-1

) 5.50 ± 0.07 4.31 ± 0.07
A
 4.97 ± 0.09

A,B
 5.16 ± 0.04

A,B
 < 0.001 

Tb.Sp (mm)  0.163 ± 0.003 0.223 ± 0.004
A
 0.186 ± 0.004

A,B
 0.178 ± 0.002

A,B
 < 0.001 

Conn.D (mm
-3

)  57.1 ± 2.2 82.6 ± 3.3
A
 70.5 ± 3.2

A,B
 79.2 ± 3.9

A
 < 0.001 

SMI  -2.31 ± 0.16 -0.22 ± 0.06
A
 -1.41 ± 0.09

A,B
 -1.19 ± 0.09

A,B
 < 0.001 

Mineralization 

(mg HA/cm
3
)  

1233.8 ± 2.8 1219.5 ± 3.8
A
 1230.1 ± 2.0

B
 1231.7 ± 3.6

B
 < 0.01 
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Table 3.6: Vertebrae mechanical properties for Objective 2. Values presented as mean ± 

SE. nUL, normalized ultimate load; nS, normalized stiffness; nW, normalized work to 

failure. (
A
 significantly different from SHAM). 

 

 
SHAM OVX OVX+RAL OVX+ALN P-value 

Ultimate Load (N)  340 ± 25 249 ± 17
A
 264 ± 17

A
 287 ± 14 < 0.01 

Stiffness (N/mm)  5247 ± 602 3582 ± 387
A
 3622 ± 330

A
 3699 ± 406

A
 0.03 

Work to failure 

(mJ)  
17.3 ± 1.7 14.7 ± 1.1 18.5 ± 1.9 16.9 ± 1.5 0.69 

nUL (MPa)  69.1 ± 4.4 68.2 ± 4.0 61.8 ± 4.1 68.1 ± 3.5 0.69 

nS (GPa)  5.68 ± 0.59 5.61 ± 0.57 4.69 ± 0.43 5.02 ± 0.58 0.60 

nW (MPa)  0.661 ± 0.067 0.694 ± 0.042 0.791 ± 0.085 0.709 ± 0.076 0.64 
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Objective 3: RAL and ALN Combination Treatment 

 Femoral vBMD and MOI were not different between groups (p > 0.05) (Table 

3.7). Ultimate load and stiffness values were not significantly different between 

OVX+RAL+ALN and OVX+RAL (p > 0.05), but OVX+ALN ultimate load (p < 0.01) 

and stiffness (p = 0.02) values were higher than the other treatment groups. SHAM 

ultimate load was higher than with RAL treatment (p < 0.01), and SHAM stiffness was 

greater than RAL and combination treatment (p = 0.02). Only treatment with ALN 

resulted in different values from OVX (p < 0.01) for ultimate load. Both SHAM and 

OVX+ALN groups had greater energy to failure than OVX (p = 0.03). No differences 

were found in material properties (p > 0.05). 

 In the vertebra, combination treatment improved BV/TV over ALN and RAL 

alone but not to SHAM levels (p < 0.001) (Figure 3.2). Both RAL and RAL+ALN 

treatment reduce Conn.D significantly from OVX values (p < 0.001), but only 

RAL+ALN treatment was different from ALN treatment results (p < 0.001) (Figure 3.3). 

Similar improvements with the OVX+RAL+ALN group were seen in SMI values (p < 

0.001) except OVX+ALN was also different from OVX (p < 0.001). Combination 

treatment improved Tb.N and Tb.Sp more than RAL alone (p < 0.001) and nearly to 

SHAM levels. No treatment differences were found with Tb.Th. SHAM and all treatment 

groups had greater mineralization than OVX (p < 0.05) (Figure 3.4). 

 RAL+ALN treatment improved ultimate load over OVX and nearly to SHAM 

levels (p < 0.01) whereas RAL and ALN treatment alone resulted in ultimate loads 

significantly less than SHAM (p < 0.01) (Figure 3.5). Similarly, OVX+RAL and 
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OVX+ALN stiffness values were less than SHAM (p < 0.05). No differences in derived 

material properties were found (Table 3.8). 

 No differences were found for preexisting or test-induced microdamage in 

vertebrae between groups (p > 0.10) (Figure 3.6). Differences were found in the OVX 

and OVX+RAL groups in the comparisons of linear damage with diffuse damage (p = 

0.01) and linear damage with severe damage (p < 0.001) (Figure 3.7). 
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Table 3.7: Femur micro-CT results and mechanical properties for Objective 3. Values presented as mean ± 

SE. vBMD, volumetric bone mineral density; MOI, moment of inertia. (
A
 significantly different from 

SHAM, 
B
 significantly different from OVX, 

C
 significantly different from OVX+RAL, 

D
 significantly 

different from OVX+ALN) 

 

 
SHAM OVX OVX+RAL OVX+ALN OVX+RAL+ALN P-value 

vBMD (mg HA/cm
3
) 1458.7 ± 8.0 1456.3 ± 11.4 1447.7 ± 13.0 1450.7 ± 4.6 1453.4 ± 3.1 0.11 

MOI (mm
4
) 6.37 ± 0.19 6.59  ± 0.22 6.27 ± 0.20 6.75 ± 0.26 6.40 ± 0.18 0.51 

Ultimate Load (N) 137 ± 3 130 ± 2 128 ± 3
A
 140 ± 2

B,C
 131 ± 3

D
 < 0.01 

Stiffness (N/mm) 456 ± 12 444 ± 7 418 ± 11
A
 459 ± 12

C
 425 ± 11

A,D
 0.02 

Energy to Failure (mJ) 56.6 ± 2.5 47.7 ± 2.7
A
 52.6 ± 2.0 57.6 ± 2.1

B
 52.8 ± 2.2 0.03 

Ultimate Stress (MPa) 178 ± 2 167 ± 3 169 ± 2 173 ± 3 171 ± 3 0.06 

Modulus (GPa) 10.31 ± 0.31 9.74 ± 0.27 9.61 ± 0.26 9.88 ± 0.40 9.55 ± 0.28 0.40 

Toughness (MPa) 4.23 ± 0.21 3.59 ± 0.20 4.02 ± 0.15 4.12 ± 0.14 4.01 ± 0.14 0.09 
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Figure 3.2: Vertebral trabecular bone volume fraction (BV/TV) for Objective 3. (A, 

significantly different from SHAM; B, significantly different from OVX; C, significantly 

different from OVX+RAL; D, significantly different from OVX+ALN). p < 0.001 
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Figure 3.3: Vertebral trabecular architecture for Objective 3. (A, significantly different 

from SHAM; B, significantly different from OVX; C, significantly different from 

OVX+RAL; D, significantly different from OVX+ALN). p < 0.001 

 

 
Figure 3.4: Vertebral trabecular thickness (Tb.Th, p < 0.001) and mineralization (p < 

0.01) for Objective 3. (A, significantly different from SHAM; B, significantly different 

from OVX). 
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Figure 3.5: Structural (extrinsic) properties of vertebrae for Objective 3. (A, significantly 

different from SHAM; B, significantly different from OVX). Ultimate Load, p < 0.01; 

Stiffness, p = 0.04. 
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Table 3.8: Vertebrae material (intrinsic) properties for Objective 3. Values presented as mean ± SE. nUL, normalized 

ultimate load; nS, normalized stiffness; nW, normalized work to failure. 

 

 
SHAM OVX SHAM+RAL OVX+RAL OVX+ALN OVX+RAL+ALN P-value 

nUL (MPa)  69.1 ± 4.4 68.2 ± 4.0 65.5 ± 4.9 61.8 ± 4.1 68.1 ± 3.5 67.1 ± 2.2 0.69 

nS (GPa)  5.68 ± 0.59 5.61 ± 0.57 5.40 ± 0.49 4.69 ± 0.43 5.02 ± 0.58 4.92 ± 0.48 0.60 

nW (MPa)  0.661 ± 0.067 0.694 ± 0.042 0.637 ± 0.061 0.791 ± 0.085 0.709 ± 0.076 0.7420.082 0.64 
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Figure 3.6: Preexisting and test-induced damage in vertebrae for Objective 3. No 

significant differences were found. 
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Figure 3.7: Microdamage types within test-induced damage. Significant differences 

between linear and diffuse damage (* indicates p = 0.01 when compared to linear damage 

in same group) and between linear and severe damage ($ indicates p < 0.001 when 

compared with linear damage in same group) within OVX and OVX+RAL groups. Lack 

of this difference in combination treatment (OVX+RAL+ALN) implies some resistance 

to the formation of the deleterious linear damage in relation to the amounts of diffuse and 

severe damage. 
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Discussion 

 Osteoporotic fractures are a considerable health concern. With an increasing 

aging population due to longer life expectancies, the incidences and costs associated with 

fractures can only be expected to increase [2]. Current therapies, such as the 

bisphosphonate alendronate (ALN) and the selective estrogen receptor modulator 

(SERM) raloxifene (RAL), are used clinically to inhibit the natural bone remodeling 

process and increase bone mineral density (BMD). Clinical studies have shown that RAL 

treatment increases BMD to a lesser degree than ALN but reduces fracture risk by a 

comparable amount [3-6]. Animal studies using ALN showed that ALN improves BMD 

and consequently structural properties but diminishes the material properties of bone [9-

11]. Similar studies evaluating RAL showed that this drug improves material properties 

with modest improvements to bone volume fraction [12-13]. Based on a clinical study 

evaluating combination treatment of RAL and ALN [15], it seems reasonable that the 

combination of these two drugs would both improve bone volume, structural properties, 

and material properties without the associated drawbacks of each drug. Thus the aim of 

this study was to determine the effects of RAL+ALN combination treatment on the bone 

biomechanical properties through mechanical tests and the bone matrix properties 

through quantification of microdamage. The results showed a significant increase in bone 

volume and improvement of trabecular architecture that coincided with a higher ultimate 

load with combination treatment that neither treatment alone could produce. Treatment 

with RAL and ALN together also resulted in a decrease of linear microdamage relative to 

diffuse and severe damage. These findings suggest that a combination treatment of RAL 

and ALN may be more effective in preventing fractures. 
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 While treatment with RAL in estrogen replete and deficient rats showed no 

differences in biomechanical properties, improvements were found in BV/TV and 

trabecular architecture between OVX and OVX+RAL but no differences between SHAM 

and SHAM+RAL. This indicates positive effects by RAL in the absence of estrogen and 

lack thereof with the presence of estrogen. However these results are not in agreement 

with other studies that have shown increased vertebral strength in an OVX rat model [14] 

and increased material properties in a non-ovariectomized dog model [13]. One reason 

may be the treatment duration. In the rat study, RAL administration occurred over a 6 

month period. However, the dosage was also 6 times the amount in the current study and 

the rats were 10 to 11 weeks in age at ovariectomy compared to 24 weeks for the current 

study. Compared to the study in dogs, the treatment duration was nearly equivalent as far 

as remodeling cycles but the difference is in the mean tissue age. Aging tissue matrix 

results in increased microdamage accumulation and decreased mechanical properties [26-

27].  

 Treatment with ALN improved vertebral trabecular architecture and BV/TV with 

no differences with RAL treatment. No effects on material properties were found, but 

ALN treatment had a positive effect on structural properties in the femur, i.e. ultimate 

load, stiffness, and energy to failure. Although beneficial, the lack of effects in the 

vertebrae for both structural and derived material properties limits the applicability of the 

positive results on femurs to reduction of more clinically relevant fracture risk. In 

addition, the issues of treatment duration and mean tissue age prevent comparisons with 

reports of clinical fractures of the femoral shaft [28]. 
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 In agreement with the results from Johnell et al [15], treatment with RAL and 

ALN in combination resulted in significantly greater BV/TV in the vertebra than both 

ALN and RAL alone. This was associated with an improvement in the vertebral ultimate 

load that was not different from SHAM. Improvements in trabecular architecture were 

also better than either drug alone produced. Specifically, RAL+ALN resulted in better 

Conn.D and SMI values than ALN while improving Tb.N and Tb.Sp to a greater degree 

than RAL. Tb.Th values were not different between treatment groups. Looking solely at 

the SHAM and OVX groups, an explanation for the resulting values in microarchitectural 

parameters can be provided. A negative SMI value indicates a dense trabecular structure 

with closed cavities in them, resembling Swiss cheese [29-32]. As the SMI value 

becomes less negative (tending towards zero and positive values) the structure begins to 

have more open cavities as a result of resorption. This results in a decrease in BV/TV as 

bone is resorbed, an increase in Conn.D as more connections are “created”, and a 

decrease in Tb.Th as plates are thinned. Trabecular separation increases as a consequence 

of closed cavities opening up and joining. Loss of trabecular struts due to this process 

then produces the loss in Tb.N. Thus, the less negative the SMI and associated changes 

reflects negative changes on the trabecular architecture as seen when comparing SHAM 

and OVX. 

 The lack of microdamage formation both in vivo and in vitro generally agrees 

with literature. One study found no differences in microdamage accumulation in vivo but 

a reduction in bone toughness of the ribs was determined [33]. No differences were found 

in microdamage in preexisting damage or test-induced damage at 1.0 mg/kg/day of ALN 

treatment in canine femoral trabeculae [24]. An increase in test induced damage was 
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found in the control group but not in ALN treated groups. However another study found 

that microdamage accumulates in the vertebrae of dogs with ALN treatment, peaking 

early in the administration of the drug [11]. RAL treatment did not result in increased 

amounts of microdamage in the literature and thus agrees with the results presented here 

[12]. It should be noted that linear microdamage, considered to be the most destructive 

type due to its propensity to propagate to catastrophic fracture [34-35], was most 

prevalent in OVX and OVX+RAL groups compared to diffuse and severe types of 

damage. While the crack lengths were not measured in this study, Allen et al found that 

treatment with RAL resulted in fewer but longer microcracks compared to the more 

abundant shorter cracks in bisphosphonate treatment [12]. The results presented here 

regarding the role of microdamage, especially damage morphology, with anti-resorptive 

treatment in an OVX rat model show promising results and warrant further 

investigations. 

 This study had a few important limitations. First, the derived material properties 

presented here do not reflect the true material properties of the bone. These calculations 

are an estimation of the bone material properties and cannot adequately account for the 

different factors involved with assessing bone quality. Second, when investigating 

microdamage formation in the rat vertebrae, certain considerations need to be taken into 

account. Mainly, the contributions of the cortical shell and trabecular bone and their 

combined contributions to bearing load contribute to the formation of microdamage. 

It is important to take into account not just the trabecular architecture but the cortical 

shell morphology as well [36-37]. It is understood that the cortical shell serves to carry 

loads in the event that trabeculae fracture, but it is interesting to note that the trabecular 
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bone carries most of the load and that the capacity of the cortical shell to bear loads is due 

in part to the trabeculae connected to it [38-39]. In fact, trabecular microfracture will 

occur before whole bone fracture, i.e. macrofracture of the cortical shell [40]. Thus, the 

inclusion of finite element modeling coupled with a modified mechanical testing protocol 

would allow improved characterization of both the whole vertebra and the role of 

microdamage formation within the trabecula in apparent properties. Third, the 

microdamage quantification was limited by a small sample size which may have 

contributed to decreased power and sensitivity during analysis. 

 In this aim, the effects of RAL and ALN as a combination therapy on 

biomechanical properties and microdamage formation were investigated. It was found 

that combination treatment improved the vertebral ultimate load, BV/TV, and trabecular 

architecture better than either RAL or ALN alone did. In addition, OVX rats saw a 

greater amount of linear microdamage relative to diffuse and severe damage whereas 

OVX+RAL+ALN rats did not, suggesting potential changes on the tissue matrix 

properties that help prevent the formation of linear microdamage. Furthermore, the 

treatment effects of RAL and ALN alone did not show positive effects in the 

biomechanical properties of the vertebrae. Despite this, the additive effects of the two 

drugs were able to improve the extrinsic properties of the vertebrae and potentially the 

integrity of the tissue matrix, indicating a potential use of combination therapy using 

RAL and ALN in treating osteoporosis and reducing fracture risk. 
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CHAPTER 4 

CONCLUSIONS AND FUTURE WORK 

 

Conclusions 

 The overall goal of this thesis was to investigate the properties of bone as it 

pertains to microdamage in aging and with anti-remodeling agents for treatment of 

osteoporosis. This was accomplished through two different aims. The first aim sought to 

determine the effects of aging on the bone matrix through microdamage progression. The 

mechanical function of bone depends a great deal on the properties of its local tissue 

matrix. While microdamage is known to accumulate naturally within the bone matrix, it 

is the ability of bone to resist microcrack growth and repair damage through remodeling 

that imparts the quality of long fatigue life in vivo. As such, an increase in the incidence 

of microdamage progression would reflect a compromised tissue matrix that has a 

reduced ability to resist microdamage progression. Decreased mechanical integrity of 

bone is present with the condition of osteoporosis as well. Current treatments (e.g. 

alendronate, ALN and raloxifene, RAL) seek to increase the bone mineral density (BMD) 

of bone in order to compensate for gross reductions in bone mass. However the 

mechanisms by which these therapies increase BMD, mainly inhibition of remodeling, 

are believed to alter the nature of bone at the local tissue level. Therefore, the second aim 

sought to determine the apparent properties of bone through biomechanical testing and 

the local tissue properties through derived material property calculations and 

microdamage quantification.  



 86 

 Aging was found to indicate increases in the average mineralization of trabecular 

bone as measured using micro-CT imaging. This reflects the age and the more 

homogeneous nature of the tissue itself since aging results in a more mature mineralized 

matrix as a consequence of imbalanced remodeling. More microdamage progression was 

found in old bone versus young bone presumably as a result of a decrease in the 

heterogeneity of the tissue matrix. Thus, the use of microdamage to assess the integrity of 

bone tissue matrix is shown to be both valid and reflective of age-related changes. 

 Combination treatment with RAL and ALN resulted in increased trabecular bone 

volume fraction which was associated with an increase in vertebral ultimate load. While 

no increases in derived material properties were found, improvements to the trabecular 

architecture by combination treatment were better than either RAL or ALN alone could 

affect. Consistent with studies from literature, no differences were found in overall 

preexisting and test-induced incidences of microdamage. However, OVX rats had more 

incidences of linear microdamage relative to diffuse and severe damage. Treatment with 

RAL and ALN together resulted in no such relative increase in linear damage. Since 

linear damage is associated more with risk of fracture than diffuse damage, this result 

suggests an improvement in the local tissue matrix properties.  

 Biomechanical testing of bones gives insight into the apparent level mechanical 

properties and by accounting for sample geometries and bone volume, can provide an 

estimation of material properties. This is a standard method for evaluating the effects of 

aging and drug therapies on extrinsic properties of bone. By creating microdamage in 

vitro and assessing the quantity and morphologies present, valuable information 

regarding the tissue level properties can be deduced. This method is a more powerful tool 
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that can be easily utilized in conjunction with biomechanical testing to provide insight 

into the underlying factors contributing to skeletal fragility and increased fractures. 

Future Work 

 To increase the power of using microdamage as a quantitative assessment of bone 

tissue matrix, improvements to the current studies have been considered. Measuring the 

characteristics of microcracks, such as crack length, crack depth, and area of damage, 

would provide new data that would enhance the methods used here. This would require 

the use of better image processing software than was used for this study. Non-invasive 

means for detecting microdamage would significantly improve the quantitative 

evaluation of the presence of microdamage. Limited means of doing this have been 

studied with the use of micro-CT imaging [1-3], but so far the results have not been much 

of an improvement over using fluorescent staining and histology. The main reason for 

this is the lack of specificity to the damage site that has made fluorescent chelating agents 

so useful. A promising technique is to use gold nanoparticles to localize to sites of 

damage, but this technique requires further work and is limited by the detection 

resolution of the micro-CT machine [4].  

 The use of finite element models would also enhance the results provided by 

mechanical testing and microdamage analysis. Previous work has validated a method for 

correlating stresses and strains to microdamage initiation in bovine [5-6], dog [7], and 

human trabecular bone. Application of this technique to the rat vertebrae would provide 

for further characterization of local tissue properties in a small animal model suitable for 

investigating bone disorders. This may require an adaptation of the technique in order to 

account for the structural nature of vertebrae (i.e. cortical shell and trabecular core) 
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compared to trabecular bone core samples. Accounting for the interplay between the 

cortex and trabeculae would provide for a more accurate and specific means of estimating 

local mechanical behavior. However, in order to characterize microdamage progression, 

non-linear models would be necessary to account for changes in the surrounding material 

and the redistribution of local stresses and strains [8-11]. Brief investigations into this 

avenue of study were conducted but further progress was halted by computational 

restrictions.  

  Another potential area of research involving HIV-associated bone loss would 

benefit greatly from a combined mechanical testing, microdamage quantification, and 

finite element modeling assessment of bone mechanical properties. With the development 

of improved HIV/AIDS treatments in recent decades, the life expectancy of HIV-infected 

patients has improved dramatically. One study found that osteopenia occurred in 67.5% 

of HIV-infected patients versus 25% of healthy adults and osteoporosis was present in 

21.2% of HIV-infected patients versus 5% in healthy adults (n = 100 healthy adults, n = 

80 HIV-infected adults) [12]. In fact many studies have raised the concern of fragility 

fractures associated with HIV-positive adults [13]. These results present potential 

opportunities for investigating the effects of HIV infection on bone apparent and local 

tissue properties in an effort to predict fragility fractures. 
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